Monday 28 May 2012

MINERAL NUTRITION


Mineral Nutrition

ESSENTIAL MINERAL ELEMENTS
Criteria for Essentiality
(a) The element must be absolutely necessary for supporting normal growth and reproduction. In the absence of the element the plants do not complete their life cycle or set the seeds.
(b) The requirement of the element must be specific and not replaceable by another element. In other words, deficiency of any one element cannot be met by supplying some other element.
(c) The element must be directly involved in the metabolism of the plant.
Based upon the above criteria only a few elements have been found to be absolutely essential for plant growth and metabolism. These elements are further divided into two broad categories based on their quantitative requirements.
(i) Macronutrients, and
(ii) Micronutrients
Macronutrients are generally present in plant tissues in large amounts (in excess of 10 mmole Kg–1 of dry matter). The macronutrients include carbon, hydrogen, oxygen, nitrogen, phosphorous, sulphur, potassium, calcium and magnesium. Of these, carbon, hydrogen and oxygen are mainly obtained from CO2 and H2O, while the others are absorbed from the soil as mineral nutrition.
Micronutrients or trace elements, are needed in very small amounts (less than 10 mmole Kg–1 of dry matter). These include iron, manganese, copper, molybdenum, zinc, boron, chlorine and nickel.
In addition to the 17 essential elements named above, there are some beneficial elements such as sodium, silicon, cobalt and selenium. They are required by higher plants.
Essential elements can also be grouped into four broad categories on the basis of their diverse functions. These categories are:
(i) Essential elements as components of biomolecules and hence structural elements of cells (e.g., carbon, hydrogen, oxygen and nitrogen).
(ii) Essential elements that are components of energy-related chemical compounds in plants (e.g., magnesium in chlorophyll and phosphorous in ATP).
(iii) Essential elements that activate or inhibit enzymes, for example Mg2+ is an activator for both ribulose bisphosphate carboxylaseoxygenase and phosphoenol pyruvate carboxylase, both of which are critical enzymes in photosynthetic carbon fixation; Zn2+ is an activator of alcohol dehydrogenase and Mo of nitrogenase during nitrogen metabolism.
(iv) Some essential elements can alter the osmotic potential of a cell. Potassium plays an important role in the opening and closing of stomata. You may recall the role of minerals as solutes in determining the water potential of a cell.
Role of Macro- and Micro-nutrients
Various forms and functions of mineral elements are given below.
Nitrogen: This is the mineral element required by plants in the greatest amount. It is absorbed mainly as NO3 though some are also taken up as NO2 or NH4+. Nitrogen is required by all parts of a plant, particularly the meristematic tissues and the metabolically active cells. Nitrogen is one of the major constituents of proteins, nucleic acids, vitamins and hormones.
Phosphorus: Phosphorus is absorbed by the plants from soil in the form of phosphate ions (either as H2PO4- or HPO42- ). Phosphorus is a constituent of cell membranes, certain proteins, all nucleic acids and nucleotides, and is required for all phosphorylation reactions.
Potassium: It is absorbed as potassium ion (K+). In plants, this is required in more abundant quantities in the meristematic tissues, buds, leaves and root tips. Potassium helps to maintain an anion-cation balance in cells and is involved in protein synthesis, opening and closing of stomata, activation of enzymes and in the maintenance of the turgidity of cells.
Calcium: Plant absorbs calcium from the soil in the form of calcium ions (Ca2+). Calcium is required by meristematic and differentiating tissues. During cell division it is used in the synthesis of cell wall, particularly as calcium pectate in the middle lamella. It is also needed during the formation of mitotic spindle. It accumulates in older leaves. It is involved in the normal functioning of the cell membranes. It activates certain enzymes and plays an important role in regulating metabolic activities.
Magnesium: It is absorbed by plants in the form of divalent Mg2+. It activates the enzymes of respiration, photosynthesis and are involved in the synthesis of DNA and RNA. Magnesium is a constituent of the ring structure of chlorophyll and helps to maintain the ribosome structure.
Sulphur: Plants obtain sulphur in the form of sulphate (SO42- ) . Sulphur is present in two amino acids – cysteine and methionine and is the main constituent of several coenzymes, vitamins (thiamine, biotin, Coenzyme A) and ferredoxin.
Iron: Plants obtain iron in the form of ferric ions (Fe3+). It is required in larger amounts in comparison to other micronutrients. It is an important constituent of proteins involved in the transfer of electrons like ferredoxin and cytochromes. It is reversibly oxidised from Fe2+ to Fe3+ during electron transfer. It activates catalase enzyme, and is essential for the formation of chlorophyll.
Manganese: It is absorbed in the form of manganous ions (Mn2+). It activates many enzymes involved in photosynthesis, respiration and nitrogen metabolism. The best defined function of manganese is in the splitting of water to liberate oxygen during photosynthesis.
Zinc: Plants obtain zinc as Zn2+ ions. It activates various enzymes, especially carboxylases. It is also needed in the synthesis of auxin.
Copper: It is absorbed as cupric ions (Cu2+). It is essential for the overall metabolism in plants. Like iron, it is associated with certain enzymes involved in redox reactions and is reversibly oxidised from Cu+ to Cu2+.
Boron: It is absorbed as BO33- or B4O72- . Boron is required for uptake and utilisation of Ca2+, membrane functioning, pollen germination, cell elongation, cell differentiation and carbohydrate translocation.
Molybdenum: Plants obtain it in the form of molybdate ions (MoO22+ ). It is a component of several enzymes, including nitrogenase and nitrate reductase both of which participate in nitrogen metabolism.
Chlorine: It is absorbed in the form of chloride anion (Cl). Along with Na+ and K+, it helps in determining the solute concentration and the anioncation balance in cells. It is essential for the water-splitting reaction in photosynthesis, a reaction that leads to oxygen evolution.
Deficiency Symptoms of Essential Elements
The deficiency symptoms vary from element to element and they disappear when the deficient mineral nutrient is provided to the plant. However, if deprivation continues, it may eventually lead to the death of the plant.
The parts of the plants that show the deficiency symptoms also depend on the mobility of the element in the plant. For elements that are actively mobilized within the plants and exported to young developing tissues, the deficiency symptoms tend to appear first in the older tissues. For example, the deficiency symptoms of nitrogen, potassium and magnesium are visible first in the senescent leaves. In the older leaves, biomolecules containing these elements are broken down, making these elements available for mobilising to younger leaves.
The deficiency symptoms tend to appear first in the young tissues whenever the elements are relatively immobile and are not transported out of the mature organs, for example, elements like sulphur and calcium are a part of the structural component of the cell and hence are not easily released. This aspect of mineral nutrition of plants is of a great significance and importance to agriculture and horticulture.
The kind of deficiency symptoms shown in plants include chlorosis, necrosis, stunted plant growth, premature fall of leaves and buds, and inhibition of cell division. Chlorosis is the loss of chlorophyll leading to yellowing in leaves. This symptom is caused by the deficiency of elements N, K, Mg, S, Fe, Mn, Zn and Mo. Likewise, necrosis, or death of tissue, particularly leaf tissue, is due to the deficiency of Ca, Mg, Cu, K. Lack or low level of N, K, S, Mo causes an inhibition of cell division. Some elements like N, S, Mo delay flowering if their concentration in plants is low.
Toxicity of Micronutrients
Any mineral ion concentration in tissues that reduces the dry weight of tissues by about 10 per cent is considered toxic. Such critical concentrations vary widely among different micronutrients. The toxicity symptoms are difficult to identify. Toxicity levels for any element also vary for different plants. Many a times, excess of an element may inhibit the uptake of another element. For example, the prominent symptom of manganese toxicity is the appearance of brown spots surrounded by chlorotic veins. It is important to know that manganese competes with iron and magnesium for uptake and with magnesium for binding with enzymes. Manganese also inhibit calcium translocation in shoot apex. Therefore, excess of manganese may, in fact, induce deficiencies of iron, magnesium and calcium. Thus, what appears as symptoms of manganese toxicity may actually be the deficiency symptoms of iron, magnesium and calcium.
MECHANISM OF ABSORPTION OF ELEMENTS
The process of absorption can be demarcated into two main phases. In the first phase, an initial rapid uptake of ions into the ‘free space’ or ‘outer space’ of cells – the apoplast, is passive. In the second phase of uptake, the ions are taken in slowly into the ‘inner space’ – the symplast of the cells. The passive movement of ions into the apoplast usually occurs through ion-channels, the trans-membrane proteins that function as selective pores. On the other hand, the entry or exit of ions to and from the symplast requires the expenditure of metabolic energy. The movement of ions is usually called the inward movement into the cells is influx and the outward movement, efflux.

TRANSLOCATION OF SOLUTES

Mineral salts are translocated through xylem along with the ascending stream of water, which is pulled up through the plant by transpirational pull. Analysis of xylem sap shows the presence of mineral salts in it. Use of radioisotopes of mineral elements also substantiate the view that they are transported through the xylem.

METABOLISM OF NITROGEN

Nitrogen Cycle
Plants compete with microbes for the limited nitrogen that is available in soil. Thus, nitrogen is a limiting nutrient for both natural and agricultural eco-systems. In nature, lightning and ultraviolet radiation provide enough energy to convert nitrogen to nitrogen oxides (NO, NO2, N2O). Industrial combustions, forest fires, automobile exhausts and power –generating stations are also sources of atmospheric nitrogen oxides.
Decomposition of organic nitrogen of dead plants and animals into ammonia is called ammonification. Some of this ammonia volatilises and re-enters the atmosphere but most of it is converted into nitrate by soil bacteria in the following steps:
nitrogen decomposition
nitrogen decomposition
Biological Nitrogen Fixation
Biological nitrogen fixation (BNF) occurs when atmospheric nitrogen is converted to ammonia by an enzyme called nitrogenase. The formula for BNF is:
N2 + 6H+ + 6e− → 2 NH3
The process is coupled to the hydrolysis of 16 equivalents of ATP and is accompanied by the co-formation of one molecule of H2. In free-living diazotrophs, the nitrogenase-generated ammonium is assimilated into glutamate through the glutamine synthetase/glutamate synthase pathway.
Enzymes responsible for nitrogenase action are very susceptible to destruction by oxygen. (In fact, many bacteria cease production of the enzyme in the presence of oxygen). Many nitrogen-fixing organisms exist only in anaerobic conditions, respiring to draw down oxygen levels, or binding the oxygen with a protein such as Leghemoglobin.
Plants that contribute to nitrogen fixation include the legume family – Fabaceae – with taxa such as clover, soybeans, alfalfa, lupines and peanuts. They contain symbiotic bacteria called Rhizobia within nodules in their root systems, producing nitrogen compounds that help the plant to grow and compete with other plants. When the plant dies, the fixed nitrogen is released, making it available to other plants and this helps to fertilize the soil. The great majority of legumes have this association, but a few genera (e.g., Styphnolobium) do not. In many traditional and organic farming practices, fields are rotated through various types of crops, which usually includes one consisting mainly or entirely of clover or buckwheat (family Polygonaceae), which were often referred to as "green manure."
nitrogen cycle
(ref: http://en.wikipedia.org/wiki/File:Nitrogen_Cycle.jpg accessed on 5th Oct 2009)
 

No comments:

Post a Comment